Branch data Line data Source code
1 : : /*
2 : : * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
3 : : *
4 : : * Licensed under the Apache License, Version 2.0 (the "License");
5 : : * you may not use this file except in compliance with the License.
6 : : * You may obtain a copy of the License at:
7 : : *
8 : : * http://www.apache.org/licenses/LICENSE-2.0
9 : : *
10 : : * Unless required by applicable law or agreed to in writing, software
11 : : * distributed under the License is distributed on an "AS IS" BASIS,
12 : : * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 : : * See the License for the specific language governing permissions and
14 : : * limitations under the License.
15 : : */
16 : :
17 : : #ifndef CLASSIFIER_H
18 : : #define CLASSIFIER_H 1
19 : :
20 : : /* Flow classifier.
21 : : *
22 : : *
23 : : * What?
24 : : * =====
25 : : *
26 : : * A flow classifier holds any number of "rules", each of which specifies
27 : : * values to match for some fields or subfields and a priority. Each OpenFlow
28 : : * table is implemented as a flow classifier.
29 : : *
30 : : * The classifier has two primary design goals. The first is obvious: given a
31 : : * set of packet headers, as quickly as possible find the highest-priority rule
32 : : * that matches those headers. The following section describes the second
33 : : * goal.
34 : : *
35 : : *
36 : : * "Un-wildcarding"
37 : : * ================
38 : : *
39 : : * A primary goal of the flow classifier is to produce, as a side effect of a
40 : : * packet lookup, a wildcard mask that indicates which bits of the packet
41 : : * headers were essential to the classification result. Ideally, a 1-bit in
42 : : * any position of this mask means that, if the corresponding bit in the packet
43 : : * header were flipped, then the classification result might change. A 0-bit
44 : : * means that changing the packet header bit would have no effect. Thus, the
45 : : * wildcarded bits are the ones that played no role in the classification
46 : : * decision.
47 : : *
48 : : * Such a wildcard mask is useful with datapaths that support installing flows
49 : : * that wildcard fields or subfields. If an OpenFlow lookup for a TCP flow
50 : : * does not actually look at the TCP source or destination ports, for example,
51 : : * then the switch may install into the datapath a flow that wildcards the port
52 : : * numbers, which in turn allows the datapath to handle packets that arrive for
53 : : * other TCP source or destination ports without additional help from
54 : : * ovs-vswitchd. This is useful for the Open vSwitch software and,
55 : : * potentially, for ASIC-based switches as well.
56 : : *
57 : : * Some properties of the wildcard mask:
58 : : *
59 : : * - "False 1-bits" are acceptable, that is, setting a bit in the wildcard
60 : : * mask to 1 will never cause a packet to be forwarded the wrong way.
61 : : * As a corollary, a wildcard mask composed of all 1-bits will always
62 : : * yield correct (but often needlessly inefficient) behavior.
63 : : *
64 : : * - "False 0-bits" can cause problems, so they must be avoided. In the
65 : : * extreme case, a mask of all 0-bits is only correct if the classifier
66 : : * contains only a single flow that matches all packets.
67 : : *
68 : : * - 0-bits are desirable because they allow the datapath to act more
69 : : * autonomously, relying less on ovs-vswitchd to process flow setups,
70 : : * thereby improving performance.
71 : : *
72 : : * - We don't know a good way to generate wildcard masks with the maximum
73 : : * (correct) number of 0-bits. We use various approximations, described
74 : : * in later sections.
75 : : *
76 : : * - Wildcard masks for lookups in a given classifier yield a
77 : : * non-overlapping set of rules. More specifically:
78 : : *
79 : : * Consider an classifier C1 filled with an arbitrary collection of rules
80 : : * and an empty classifier C2. Now take a set of packet headers H and
81 : : * look it up in C1, yielding a highest-priority matching rule R1 and
82 : : * wildcard mask M. Form a new classifier rule R2 out of packet headers
83 : : * H and mask M, and add R2 to C2 with a fixed priority. If one were to
84 : : * do this for every possible set of packet headers H, then this
85 : : * process would not attempt to add any overlapping rules to C2, that is,
86 : : * any packet lookup using the rules generated by this process matches at
87 : : * most one rule in C2.
88 : : *
89 : : * During the lookup process, the classifier starts out with a wildcard mask
90 : : * that is all 0-bits, that is, fully wildcarded. As lookup proceeds, each
91 : : * step tends to add constraints to the wildcard mask, that is, change
92 : : * wildcarded 0-bits into exact-match 1-bits. We call this "un-wildcarding".
93 : : * A lookup step that examines a particular field must un-wildcard that field.
94 : : * In general, un-wildcarding is necessary for correctness but undesirable for
95 : : * performance.
96 : : *
97 : : *
98 : : * Basic Classifier Design
99 : : * =======================
100 : : *
101 : : * Suppose that all the rules in a classifier had the same form. For example,
102 : : * suppose that they all matched on the source and destination Ethernet address
103 : : * and wildcarded all the other fields. Then the obvious way to implement a
104 : : * classifier would be a hash table on the source and destination Ethernet
105 : : * addresses. If new classification rules came along with a different form,
106 : : * you could add a second hash table that hashed on the fields matched in those
107 : : * rules. With two hash tables, you look up a given flow in each hash table.
108 : : * If there are no matches, the classifier didn't contain a match; if you find
109 : : * a match in one of them, that's the result; if you find a match in both of
110 : : * them, then the result is the rule with the higher priority.
111 : : *
112 : : * This is how the classifier works. In a "struct classifier", each form of
113 : : * "struct cls_rule" present (based on its ->match.mask) goes into a separate
114 : : * "struct cls_subtable". A lookup does a hash lookup in every "struct
115 : : * cls_subtable" in the classifier and tracks the highest-priority match that
116 : : * it finds. The subtables are kept in a descending priority order according
117 : : * to the highest priority rule in each subtable, which allows lookup to skip
118 : : * over subtables that can't possibly have a higher-priority match than already
119 : : * found. Eliminating lookups through priority ordering aids both classifier
120 : : * primary design goals: skipping lookups saves time and avoids un-wildcarding
121 : : * fields that those lookups would have examined.
122 : : *
123 : : * One detail: a classifier can contain multiple rules that are identical other
124 : : * than their priority. When this happens, only the highest priority rule out
125 : : * of a group of otherwise identical rules is stored directly in the "struct
126 : : * cls_subtable", with the other almost-identical rules chained off a linked
127 : : * list inside that highest-priority rule.
128 : : *
129 : : * The following sub-sections describe various optimizations over this simple
130 : : * approach.
131 : : *
132 : : *
133 : : * Staged Lookup (Wildcard Optimization)
134 : : * -------------------------------------
135 : : *
136 : : * Subtable lookup is performed in ranges defined for struct flow, starting
137 : : * from metadata (registers, in_port, etc.), then L2 header, L3, and finally
138 : : * L4 ports. Whenever it is found that there are no matches in the current
139 : : * subtable, the rest of the subtable can be skipped.
140 : : *
141 : : * Staged lookup does not reduce lookup time, and it may increase it, because
142 : : * it changes a single hash table lookup into multiple hash table lookups.
143 : : * It reduces un-wildcarding significantly in important use cases.
144 : : *
145 : : *
146 : : * Prefix Tracking (Wildcard Optimization)
147 : : * ---------------------------------------
148 : : *
149 : : * Classifier uses prefix trees ("tries") for tracking the used
150 : : * address space, enabling skipping classifier tables containing
151 : : * longer masks than necessary for the given address. This reduces
152 : : * un-wildcarding for datapath flows in parts of the address space
153 : : * without host routes, but consulting extra data structures (the
154 : : * tries) may slightly increase lookup time.
155 : : *
156 : : * Trie lookup is interwoven with staged lookup, so that a trie is
157 : : * searched only when the configured trie field becomes relevant for
158 : : * the lookup. The trie lookup results are retained so that each trie
159 : : * is checked at most once for each classifier lookup.
160 : : *
161 : : * This implementation tracks the number of rules at each address
162 : : * prefix for the whole classifier. More aggressive table skipping
163 : : * would be possible by maintaining lists of tables that have prefixes
164 : : * at the lengths encountered on tree traversal, or by maintaining
165 : : * separate tries for subsets of rules separated by metadata fields.
166 : : *
167 : : * Prefix tracking is configured via OVSDB "Flow_Table" table,
168 : : * "fieldspec" column. "fieldspec" is a string map where a "prefix"
169 : : * key tells which fields should be used for prefix tracking. The
170 : : * value of the "prefix" key is a comma separated list of field names.
171 : : *
172 : : * There is a maximum number of fields that can be enabled for any one
173 : : * flow table. Currently this limit is 3.
174 : : *
175 : : *
176 : : * Partitioning (Lookup Time and Wildcard Optimization)
177 : : * ----------------------------------------------------
178 : : *
179 : : * Suppose that a given classifier is being used to handle multiple stages in a
180 : : * pipeline using "resubmit", with metadata (that is, the OpenFlow 1.1+ field
181 : : * named "metadata") distinguishing between the different stages. For example,
182 : : * metadata value 1 might identify ingress rules, metadata value 2 might
183 : : * identify ACLs, and metadata value 3 might identify egress rules. Such a
184 : : * classifier is essentially partitioned into multiple sub-classifiers on the
185 : : * basis of the metadata value.
186 : : *
187 : : * The classifier has a special optimization to speed up matching in this
188 : : * scenario:
189 : : *
190 : : * - Each cls_subtable that matches on metadata gets a tag derived from the
191 : : * subtable's mask, so that it is likely that each subtable has a unique
192 : : * tag. (Duplicate tags have a performance cost but do not affect
193 : : * correctness.)
194 : : *
195 : : * - For each metadata value matched by any cls_rule, the classifier
196 : : * constructs a "struct cls_partition" indexed by the metadata value.
197 : : * The cls_partition has a 'tags' member whose value is the bitwise-OR of
198 : : * the tags of each cls_subtable that contains any rule that matches on
199 : : * the cls_partition's metadata value. In other words, struct
200 : : * cls_partition associates metadata values with subtables that need to
201 : : * be checked with flows with that specific metadata value.
202 : : *
203 : : * Thus, a flow lookup can start by looking up the partition associated with
204 : : * the flow's metadata, and then skip over any cls_subtable whose 'tag' does
205 : : * not intersect the partition's 'tags'. (The flow must also be looked up in
206 : : * any cls_subtable that doesn't match on metadata. We handle that by giving
207 : : * any such cls_subtable TAG_ALL as its 'tags' so that it matches any tag.)
208 : : *
209 : : * Partitioning saves lookup time by reducing the number of subtable lookups.
210 : : * Each eliminated subtable lookup also reduces the amount of un-wildcarding.
211 : : *
212 : : *
213 : : * Classifier Versioning
214 : : * =====================
215 : : *
216 : : * Classifier lookups are always done in a specific classifier version, where
217 : : * a version is defined to be a natural number.
218 : : *
219 : : * When a new rule is added to a classifier, it is set to become visible in a
220 : : * specific version. If the version number used at insert time is larger than
221 : : * any version number currently used in lookups, the new rule is said to be
222 : : * invisible to lookups. This means that lookups won't find the rule, but the
223 : : * rule is immediately available to classifier iterations.
224 : : *
225 : : * Similarly, a rule can be marked as to be deleted in a future version. To
226 : : * delete a rule in a way to not remove the rule before all ongoing lookups are
227 : : * finished, the rule should be made invisible in a specific version number.
228 : : * Then, when all the lookups use a later version number, the rule can be
229 : : * actually removed from the classifier.
230 : : *
231 : : * Classifiers can hold duplicate rules (rules with the same match criteria and
232 : : * priority) when at most one of these duplicates is visible in any given
233 : : * lookup version. The caller responsible for classifier modifications must
234 : : * maintain this invariant.
235 : : *
236 : : * The classifier supports versioning for two reasons:
237 : : *
238 : : * 1. Support for versioned modifications makes it possible to perform an
239 : : * arbitraty series of classifier changes as one atomic transaction,
240 : : * where intermediate versions of the classifier are not visible to any
241 : : * lookups. Also, when a rule is added for a future version, or marked
242 : : * for removal after the current version, such modifications can be
243 : : * reverted without any visible effects to any of the current lookups.
244 : : *
245 : : * 2. Performance: Adding (or deleting) a large set of rules can, in
246 : : * pathological cases, have a cost proportional to the number of rules
247 : : * already in the classifier. When multiple rules are being added (or
248 : : * deleted) in one go, though, this pathological case cost can be
249 : : * typically avoided, as long as it is OK for any new rules to be
250 : : * invisible until the batch change is complete.
251 : : *
252 : : * Note that the classifier_replace() function replaces a rule immediately, and
253 : : * is therefore not safe to use with versioning. It is still available for the
254 : : * users that do not use versioning.
255 : : *
256 : : *
257 : : * Deferred Publication
258 : : * ====================
259 : : *
260 : : * Removing large number of rules from classifier can be costly, as the
261 : : * supporting data structures are teared down, in many cases just to be
262 : : * re-instantiated right after. In the worst case, as when each rule has a
263 : : * different match pattern (mask), the maintenance of the match patterns can
264 : : * have cost O(N^2), where N is the number of different match patterns. To
265 : : * alleviate this, the classifier supports a "deferred mode", in which changes
266 : : * in internal data structures needed for future version lookups may not be
267 : : * fully computed yet. The computation is finalized when the deferred mode is
268 : : * turned off.
269 : : *
270 : : * This feature can be used with versioning such that all changes to future
271 : : * versions are made in the deferred mode. Then, right before making the new
272 : : * version visible to lookups, the deferred mode is turned off so that all the
273 : : * data structures are ready for lookups with the new version number.
274 : : *
275 : : * To use deferred publication, first call classifier_defer(). Then, modify
276 : : * the classifier via additions (classifier_insert() with a specific, future
277 : : * version number) and deletions (use cls_rule_make_removable_after_version()).
278 : : * Then call classifier_publish(), and after that, announce the new version
279 : : * number to be used in lookups.
280 : : *
281 : : *
282 : : * Thread-safety
283 : : * =============
284 : : *
285 : : * The classifier may safely be accessed by many reader threads concurrently
286 : : * and by a single writer, or by multiple writers when they guarantee mutually
287 : : * exlucive access to classifier modifications.
288 : : *
289 : : * Since the classifier rules are RCU protected, the rule destruction after
290 : : * removal from the classifier must be RCU postponed. Also, when versioning is
291 : : * used, the rule removal itself needs to be typically RCU postponed. In this
292 : : * case the rule destruction is doubly RCU postponed, i.e., the second
293 : : * ovsrcu_postpone() call to destruct the rule is called from the first RCU
294 : : * callback that removes the rule.
295 : : *
296 : : * Rules that have never been visible to lookups are an exeption to the above
297 : : * rule. Such rules can be removed immediately, but their destruction must
298 : : * still be RCU postponed, as the rule's visibility attribute may be examined
299 : : * parallel to the rule's removal. */
300 : :
301 : : #include "cmap.h"
302 : : #include "openvswitch/match.h"
303 : : #include "openvswitch/meta-flow.h"
304 : : #include "pvector.h"
305 : : #include "rculist.h"
306 : : #include "openvswitch/type-props.h"
307 : : #include "versions.h"
308 : :
309 : : #ifdef __cplusplus
310 : : extern "C" {
311 : : #endif
312 : :
313 : : /* Classifier internal data structures. */
314 : : struct cls_subtable;
315 : : struct cls_match;
316 : :
317 : : struct trie_node;
318 : : typedef OVSRCU_TYPE(struct trie_node *) rcu_trie_ptr;
319 : :
320 : : /* Prefix trie for a 'field' */
321 : : struct cls_trie {
322 : : const struct mf_field *field; /* Trie field, or NULL. */
323 : : rcu_trie_ptr root; /* NULL if none. */
324 : : };
325 : :
326 : : enum {
327 : : CLS_MAX_INDICES = 3, /* Maximum number of lookup indices per subtable. */
328 : : CLS_MAX_TRIES = 3 /* Maximum number of prefix trees per classifier. */
329 : : };
330 : :
331 : : /* A flow classifier. */
332 : : struct classifier {
333 : : int n_rules; /* Total number of rules. */
334 : : uint8_t n_flow_segments;
335 : : uint8_t flow_segments[CLS_MAX_INDICES]; /* Flow segment boundaries to use
336 : : * for staged lookup. */
337 : : struct cmap subtables_map; /* Contains "struct cls_subtable"s. */
338 : : struct pvector subtables;
339 : : struct cmap partitions; /* Contains "struct cls_partition"s. */
340 : : struct cls_trie tries[CLS_MAX_TRIES]; /* Prefix tries. */
341 : : unsigned int n_tries;
342 : : bool publish; /* Make changes visible to lookups? */
343 : : };
344 : :
345 : : struct cls_conjunction {
346 : : uint32_t id;
347 : : uint8_t clause;
348 : : uint8_t n_clauses;
349 : : };
350 : :
351 : : /* A rule to be inserted to the classifier. */
352 : : struct cls_rule {
353 : : struct rculist node; /* In struct cls_subtable 'rules_list'. */
354 : : const int priority; /* Larger numbers are higher priorities. */
355 : : OVSRCU_TYPE(struct cls_match *) cls_match; /* NULL if not in a
356 : : * classifier. */
357 : : const struct minimatch match; /* Matching rule. */
358 : : };
359 : :
360 : : /* Constructor/destructor. Must run single-threaded. */
361 : : void classifier_init(struct classifier *, const uint8_t *flow_segments);
362 : : void classifier_destroy(struct classifier *);
363 : :
364 : : /* Modifiers. Caller MUST exclude concurrent calls from other threads. */
365 : : bool classifier_set_prefix_fields(struct classifier *,
366 : : const enum mf_field_id *trie_fields,
367 : : unsigned int n_trie_fields);
368 : :
369 : : void cls_rule_init(struct cls_rule *, const struct match *, int priority);
370 : : void cls_rule_init_from_minimatch(struct cls_rule *, const struct minimatch *,
371 : : int priority);
372 : : void cls_rule_clone(struct cls_rule *, const struct cls_rule *);
373 : : void cls_rule_move(struct cls_rule *dst, struct cls_rule *src);
374 : : void cls_rule_destroy(struct cls_rule *);
375 : :
376 : : void cls_rule_set_conjunctions(struct cls_rule *,
377 : : const struct cls_conjunction *, size_t n);
378 : : void cls_rule_make_invisible_in_version(const struct cls_rule *,
379 : : ovs_version_t);
380 : : void cls_rule_restore_visibility(const struct cls_rule *);
381 : :
382 : : void classifier_insert(struct classifier *, const struct cls_rule *,
383 : : ovs_version_t, const struct cls_conjunction *,
384 : : size_t n_conjunctions);
385 : : const struct cls_rule *classifier_replace(struct classifier *,
386 : : const struct cls_rule *,
387 : : ovs_version_t,
388 : : const struct cls_conjunction *,
389 : : size_t n_conjunctions);
390 : : const struct cls_rule *classifier_remove(struct classifier *,
391 : : const struct cls_rule *);
392 : : static inline void classifier_defer(struct classifier *);
393 : : static inline void classifier_publish(struct classifier *);
394 : :
395 : : /* Lookups. These are RCU protected and may run concurrently with modifiers
396 : : * and each other. */
397 : : const struct cls_rule *classifier_lookup(const struct classifier *,
398 : : ovs_version_t, struct flow *,
399 : : struct flow_wildcards *);
400 : : bool classifier_rule_overlaps(const struct classifier *,
401 : : const struct cls_rule *, ovs_version_t);
402 : : const struct cls_rule *classifier_find_rule_exactly(const struct classifier *,
403 : : const struct cls_rule *,
404 : : ovs_version_t);
405 : : const struct cls_rule *classifier_find_match_exactly(const struct classifier *,
406 : : const struct match *,
407 : : int priority,
408 : : ovs_version_t);
409 : : bool classifier_is_empty(const struct classifier *);
410 : : int classifier_count(const struct classifier *);
411 : :
412 : : /* Classifier rule properties. These are RCU protected and may run
413 : : * concurrently with modifiers and each other. */
414 : : bool cls_rule_equal(const struct cls_rule *, const struct cls_rule *);
415 : : void cls_rule_format(const struct cls_rule *, struct ds *);
416 : : bool cls_rule_is_catchall(const struct cls_rule *);
417 : : bool cls_rule_is_loose_match(const struct cls_rule *rule,
418 : : const struct minimatch *criteria);
419 : : bool cls_rule_visible_in_version(const struct cls_rule *, ovs_version_t);
420 : :
421 : : /* Iteration.
422 : : *
423 : : * Iteration is lockless and RCU-protected. Concurrent threads may perform all
424 : : * kinds of concurrent modifications without ruining the iteration. Obviously,
425 : : * any modifications may or may not be visible to the concurrent iterator, but
426 : : * all the rules not deleted are visited by the iteration. The iterating
427 : : * thread may also modify the classifier rules itself.
428 : : *
429 : : * 'TARGET' iteration only iterates rules matching the 'TARGET' criteria.
430 : : * Rather than looping through all the rules and skipping ones that can't
431 : : * match, 'TARGET' iteration skips whole subtables, if the 'TARGET' happens to
432 : : * be more specific than the subtable. */
433 : : struct cls_cursor {
434 : : const struct classifier *cls;
435 : : const struct cls_subtable *subtable;
436 : : const struct cls_rule *target;
437 : : ovs_version_t version; /* Version to iterate. */
438 : : struct pvector_cursor subtables;
439 : : const struct cls_rule *rule;
440 : : };
441 : :
442 : : struct cls_cursor cls_cursor_start(const struct classifier *,
443 : : const struct cls_rule *target,
444 : : ovs_version_t);
445 : : void cls_cursor_advance(struct cls_cursor *);
446 : :
447 : : #define CLS_FOR_EACH(RULE, MEMBER, CLS) \
448 : : CLS_FOR_EACH_TARGET(RULE, MEMBER, CLS, NULL, OVS_VERSION_MAX)
449 : : #define CLS_FOR_EACH_TARGET(RULE, MEMBER, CLS, TARGET, VERSION) \
450 : : for (struct cls_cursor cursor__ = cls_cursor_start(CLS, TARGET, VERSION); \
451 : : (cursor__.rule \
452 : : ? (INIT_CONTAINER(RULE, cursor__.rule, MEMBER), \
453 : : cls_cursor_advance(&cursor__), \
454 : : true) \
455 : : : false); \
456 : : )
457 : :
458 : :
459 : : static inline void
460 : 29390 : classifier_defer(struct classifier *cls)
461 : : {
462 : 29390 : cls->publish = false;
463 : 29390 : }
464 : :
465 : : static inline void
466 : 8011 : classifier_publish(struct classifier *cls)
467 : : {
468 : 8011 : cls->publish = true;
469 : 8011 : pvector_publish(&cls->subtables);
470 : 8011 : }
471 : :
472 : : #ifdef __cplusplus
473 : : }
474 : : #endif
475 : : #endif /* classifier.h */
|